本文共 2280 字,大约阅读时间需要 7 分钟。
A family hierarchy is usually presented by a pedigree tree where all the nodes on the same level belong to the same generation. Your task is to find the generation with the largest population.
Each input file contains one test case. Each case starts with two positive integers N (<100) which is the total number of family members in the tree (and hence assume that all the members are numbered from 01 to N), and M (<N) which is the number of family members who have children. Then M lines follow, each contains the information of a family member in the following format:
ID K ID[1] ID[2] ... ID[K]
where ID
is a two-digit number representing a family member, K
(>0) is the number of his/her children, followed by a sequence of two-digit ID
's of his/her children. For the sake of simplicity, let us fix the root ID
to be 01
. All the numbers in a line are separated by a space.
For each test case, print in one line the largest population number and the level of the corresponding generation. It is assumed that such a generation is unique, and the root level is defined to be 1.
23 1321 1 2301 4 03 02 04 0503 3 06 07 0806 2 12 1313 1 2108 2 15 1602 2 09 1011 2 19 2017 1 2205 1 1107 1 1409 1 1710 1 18
9 4
输入树的结点个数N,结点编号为1~N,非叶子结点个数M,然后输出M个非叶子结点格子的孩子结点的编号,求结点个数最多的一层,根结点的层号为1,输出该层的结点个数以及层号。
树、DFS
1、使用struct node{}建树;
2、使用vector数组,在dfs的过程中维护每个depth的节点个数;
3、遍历vector找到最大的层。
#include#include using namespace std;struct node { vector v;};vector vec;vector vec_dep;void dfs(int root, int depth) { vec_dep[depth]++; //leaf if (vec[root].v.size() == 0) { return; } //next for (int i = 0; i < vec[root].v.size(); ++i) { dfs(vec[root].v[i], depth + 1); } return;}int main() { //read int n, m; cin >> n >> m; vec.resize(n + 1); vec_dep.resize(n + 1, 0); //read and build tree while (m--) { int id, k; cin >> id >> k; vec[id].v.resize(k); for (int i = 0; i < k; ++i) { cin >> vec[id].v[i]; } } //dfs dfs(1, 1); //max int max_pop = 0, max_gen = 1; for (int i = 1; i <= n; ++i) { if (vec_dep[i] > max_pop) { max_pop = vec_dep[i]; max_gen = i; } } //output cout << max_pop << " " << max_gen; system("pause"); return 0;}
转载地址:http://ptaf.baihongyu.com/